Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.136
Filter
1.
Nature ; 614(7949): 767-773, 2023 02.
Article in English | MEDLINE | ID: mdl-36755096

ABSTRACT

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.


Subject(s)
DNA Replication , Mitochondria , Signal Transduction , Telomere , Humans , DNA/biosynthesis , DNA/genetics , DNA/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/pathology , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Telomere/genetics , Telomere/metabolism , Interferons , Immunity, Innate , Autophagy
2.
BMC Mol Cell Biol ; 23(1): 59, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528556

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers. Long non-coding RNA HOXA-AS2 (lncRNA HOXA-AS2) have been extensively studied in various cancers. However, the expression and function of HOXA-AS2 in OSCC still remain unknown. The aim of this study is to investigate the roles of HOXA-AS2 in OSCC. METHODS: OSCC tissues and adjacent normal tissues were obtained from OSCC patients. RT-qPCR and Western blot assays were used to detect the expression of target genes in OSCC tissues or cells. Cells proliferation, migration and invasion were detected by CCK-8 and transwell assays, respectively. The target gene of HOXA-AS2 was confirmed by dual-luciferase reporter gene assay. RESULTS: We found that HOXA-AS2 expression was remarkably upregulated in OSCC tissues and cell lines. The downregulation of HOXA-AS2 inhibited cells proliferation, migration and invasion. Our bioinformatics analysis found that HOXA-AS2 can target miR-520c-3p, which was confirmed by dual-luciferase reporter gene assay. The expression of HOXA-AS2 was found to be negatively associated with miR-520c-3p in OSCC tissues. Moreover, sorting nexin 5 (SNX5), a downstream target of miR-520c-3p, was inhibited by miR-520c-3p overexpression. SNX5 was also increased in OSCC tissues and cell lines. Additionally, we found that the higher expression of SNX5 was strongly associated with the tumor grade of OSCC patients in Oncomine database. Most importantly, the knockdown of HOXA-AS2 induced cells apoptosis by promoting autophagy by regulating SNX5. CONCLUSION: HOXA-AS2 served an oncogene and promoted OSCC progression via the miR-520c-3p/SNX5 axis. Thus, HOXA-AS2 may be a new biomarker for diagnosis and treatment of OSCC.


Subject(s)
Head and Neck Neoplasms , RNA, Long Noncoding , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism
3.
Epigenetics Chromatin ; 15(1): 26, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843975

ABSTRACT

Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.


Subject(s)
Chromosomal Proteins, Non-Histone , RNA, Long Noncoding , X Chromosome Inactivation , Animals , Blastocyst/physiology , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Development , Genomic Imprinting , Mice , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome
4.
Dis Markers ; 2022: 9997212, 2022.
Article in English | MEDLINE | ID: mdl-35132340

ABSTRACT

Breast cancer is a heterogeneous disease and is the most common and prevalent form of malignancy diagnosed in women. lncRNAs are found to be frequently dysregulated in cancer, and its expression plays a critical role in tumorigenesis. The study included 100 histopathologically confirmed, newly diagnosed untreated patients of invasive ductal carcinoma (IDC) of breast cancer patients and 100 healthy subjects. After blood collection, the serum was separated and total RNA was extracted, cDNA was synthesized using 100 ng of total RNA, and lncRNA (ANRIL, TUG1, UCA1, and HIT) expression was analyzed. Increased ANRIL (3.83-fold), TUG1 (7.64-fold), UCA1 (7.82-fold), and HIT (3.31-fold) expressions were observed in breast cancer patients compared to healthy controls. Relative expression of lncRNAs UCA-1 (p = 0.010) and HIT-1 (p < 0.0001) was significantly elevated in patients with advanced breast cancer stage compared to those with early-stage disease. While lncRNA TUG-1 expression was found to be higher in patients with early-stage tumors than those with advanced-stage tumors (p = 0.06), lncRNA ANRIL showed increased expression in patients with PR positive status (p = 0.04). However, we found a significant difference in lncRNA HIT expression in HER-2 positive breast cancer patients compared to HER-2 negative breast cancer patients (p = 0.005). An increase in the expression of serum lncRNAs ANRIL (p < 0.0001), UCA-1 (p = 0.004), and HIT (p < 0.0001) was observed in the distant organ metastatic breast cancer patients. In the ROC curve concerning lymph node involvement, the sensitivity and specificity of lncRNA HIT were 68% and 58%, respectively (p value = 0.007). In the ROC curve w.r.t. stages of disease, the sensitivity and specificity of lncRNA HIT were 80% and 50%, respectively (p value < 0.0001). Better sensitivity and specificity were observed for lncRNA HIT (sensitivity 91% and specificity 78%; p value < 0.0001) and ANRIL (sensitivity 70% and specificity 60%; p value < 0.0001) w.r.t distant organ metastases.


Subject(s)
Breast Neoplasms/blood , RNA, Long Noncoding/blood , Breast Neoplasms/metabolism , Female , Humans , Middle Aged , RNA, Long Noncoding/biosynthesis
5.
Life Sci ; 293: 120328, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051418

ABSTRACT

Paclitaxel (PTX) resistance contributes to mortality in epithelial ovarian cancer (EOC). Aerobic glycolysis is elevated in the tumor environment and may influence resistance to PTX in EOC. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA binding protein that is up-regulated in EOC, but its underlying mechanism in EOC is unclear. Here, we investigate the role of KHDRBS3 in glycolysis and increased resistance to PTX. Expression of KHDRBS3 and Claudin (CLDN6) were measured in EOC tissue and cells by quantitative real-time PCR, western blotting and immunohistochemistry. The biological functions of KHDRBS3, MIR17HG and CLDN6 were examined using MTT, colony formation, apoptosis and seahorse assays in vitro. For in vivo experiments, a xenograft model was used to investigate the effects of KHDRBS3 and MIR17HG in EOC. Here, we investigate the role of KHDRBS3 in glycolysis and increased resistance to PTX. The expression of KHDRBS3 was up-regulated in PTX-resistant cells. KHDRBS3 knockdown restrained the IC50 of PTX, cell proliferation, colony formation and glycolysis in SKOV3-R and A2780-R cells in vitro and enhanced PTX sensitivity in a xenograft mouse model in vivo. KHDRBS3 interacts with lncRNA MIR17HG, which is down-regulated in EOC tissue and cells. The effect of KHDRBS3 overexpression on PTX resistance and glycolysis was rescued by MIR17HG overexpression. Additionally, MIR17HG interacts with the 3'UTR of CLDN6 and negatively regulates CLDN6 expression. MIR17HG overexpression suppressed the IC50 of PTX and glycolysis by targeting CLDN6. Our results reveal a KHDRBS3-MIR17HG-CLDN6 regulatory axis that contributes to enhanced glycolysis in EOC and represents a potential target for therapy.


Subject(s)
Claudins/biosynthesis , Drug Resistance, Neoplasm/drug effects , Glycolysis/drug effects , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , RNA, Long Noncoding/biosynthesis , RNA-Binding Proteins/biosynthesis , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Biomarkers, Tumor/biosynthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/physiology , Female , Glycolysis/physiology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/pathology , Signal Transduction/drug effects , Signal Transduction/physiology , Xenograft Model Antitumor Assays/methods
6.
Bioengineered ; 13(2): 3707-3723, 2022 02.
Article in English | MEDLINE | ID: mdl-35094653

ABSTRACT

Breast cancer is the leading cause of cancer-related death among females, which is required to be solved urgently. Recent studies have found significant changes in a large number of genes and their transcriptional levels during breast cancer development, which are often closely related to the abnormal expression of long noncoding RNAs (lncRNAs). Herein, our study found that MBNL1-AS1 was down-regulated both in breast cancer tissues and cell lines, and it functioned as a tumor suppressor to inhibit cancer cell proliferation, migration, and invasion. MiR-423-5p was found to be a target of MBNL1-AS1 with an inverse relationship: an increase in miR-423-5p could counteract the inhibitory effect induced by MBNL1-AS1 on cancer cell promotion. Further, CREBZF was negatively regulated by miR-423-5p. Accordingly, CREBZF knockdown could impair the hindrance of cancer cell growth mediated by low miR-423-5p expression. Also, MBNL1-AS1 influenced the PI3K/AKT pathway, which was associated with cell proliferation and apoptosis, by regulating CREBZF. As a result, our work illustrated the tumor suppressor role of MBNL1-AS1 in breast cancer via upregulating miR-423-5p-targeted CREBZF. Thereby, the evidence indicates the complete understanding of the role of MBNL1-AS1/miR-423-5p/CREBZF axis in the regulation of breast cancer development, which could be used as a biomarker for predicating survival among breast cancer patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Long Noncoding/biosynthesis , Signal Transduction , Up-Regulation , Aged , Basic-Leucine Zipper Transcription Factors/genetics , Breast Neoplasms/genetics , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , Middle Aged , Neoplasm Proteins/genetics , RNA, Long Noncoding/genetics
7.
Bioengineered ; 13(2): 2648-2657, 2022 02.
Article in English | MEDLINE | ID: mdl-35067166

ABSTRACT

Study shows that long non-coding RNA (lncRNA) plays a regulatory role in cardiovascular diseases, and the mechanism of rhabdomyosarcoma 2-associated transcript (RMST) in atherosclerosis (AS) is still unclear. This study aimed to evaluate the expression of RMST and its possible role in the occurrence of AS. RMST and miR-224-3p level in serum and human umbilical vein endothelial cells (HUVECs) were determined by real-time quantitative PCR (RT-qPCR). In vitro atherosclerotic cell model was achieved by treating HUVECs with ox-LDL. Receiver operating characteristic (ROC) curve assessed the diagnostic value of RMST in AS, and Pearson correlation coefficient estimated the correlation of RMST with carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cfPWV). Cell counting kit-8 (CCK-8) assay and Enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the effect of RMST on cell viability and inflammatory response. The luciferase analysis was used to validate the relationship between RMST and miR-224-3p. The results showed that in serum and HUVECs, RMST levels were increased, while miR-224-3p level was decreased. ROC curve suggested that RMST had clinical diagnostic value for AS. Besides, CIMT and cfPWV were positively correlated with RMST levels, respectively. In HUVECs, RMST-knockdown notably improved the cell viability and inhibited the production of inflammatory factors. Moreover, miR-224-3p was the target of RMST. In conclusion, RMST has the potential to be a diagnostic marker for AS. RMST-knockdown contributes to the enhancement of cell viability and the inhibition of inflammatory response, which may provide new insights into the conquest of AS.


Subject(s)
Atherosclerosis/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/biosynthesis , RNA, Long Noncoding/biosynthesis , Atherosclerosis/genetics , Female , Humans , Male , MicroRNAs/genetics , Middle Aged
8.
Invest Ophthalmol Vis Sci ; 63(1): 37, 2022 01 03.
Article in English | MEDLINE | ID: mdl-35084431

ABSTRACT

Purpose: The oxygen-induced retinal neovascularization mouse model closely approximates pathological changes associated with human retinal neovascularization-associated diseases, including retinopathies. We used this model and human retinal endothelial cells (HRECs) under hypoxia to explore the relationship between taurine upregulated gene-1 (TUG1), vascular endothelial growth factor (VEGF), and miR-299-3p on retinopathy of prematurity (ROP). Methods: An oxygen-induced retinopathy (OIR) mouse model was established; the mice were divided into a normal control group, OIR group, TUG1 control group (lentivirus control), and TUG1-knockdown group. The apoptosis of retinal cells was evaluated using a TUNEL assay. Angiogenic, apoptotic, and inflammatory factors were detected by Western blot, immunohistochemistry, and immunofluorescence analyses. HRECs were cultured under hypoxia and assessed for VEGF expression, apoptosis, tubule formation, and migration ability. The relationship between TUG1, VEGF, and miR-299-3p was detected via a dual luciferase reporter gene assay. Results: Intravitreal injection of TUG1 lentivirus reduced the inflammatory response in the mouse retinal tissue and markedly reduced pathological changes in the retina. Overexpression of miR-299 in HRECs reduced the apoptosis rate, tube formation, and migration ability of hypoxia-treated cells, thereby inhibiting the formation of new blood vessels. The dual luciferase reporter gene assay suggested that miR-299 has binding sites for TUG1 and VEGF. Conclusions: TUG1 reduces the expression of VEGFA by competitively adsorbing miR-299-3p and facilitates the regulation of retinal neovascularization, suggesting that it may serve as a new therapeutic target for retinal neovascular diseases.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Retinal Neovascularization/genetics , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , Oxygen/toxicity , RNA, Long Noncoding/biosynthesis , Retinal Neovascularization/chemically induced , Retinal Neovascularization/metabolism
9.
Bioengineered ; 13(2): 3785-3796, 2022 02.
Article in English | MEDLINE | ID: mdl-35081872

ABSTRACT

The critical roles of lncRNAs in drug resistance of malignancies have been widely recognized. This investigation aims to study the function of lncRNA PCAT6 in the resistance of non-small cell lung cancer (NSCLC) to gefitinib. In our study, we demonstrated that prostate cancer-associated transcript 6 (PCAT6) was upregulated in gefitinib-resistant NSCLC. PCAT6 knockdown inhibited gefitinib resistance of NSCLC, as indicated by decreased IC50 value, proliferation, and metastasis, and increased cell apoptosis. Besides, PCAT6 could directly target miR-326 in gefitinib-resistant NSCLC cells and augment NSCLC resistance to gefitinib by serving as ceRNA of miR-326. Furthermore, interferon-alpha receptor 2 (IFNAR2) was validated as a downstream target of miR-326 and miR-326 reduced resistance to gefitinib by inhibiting IFNAR2 expression. Our investigation identified that PCAT6 enhanced gefitinib resistance of NSCLC via miR-326/IFNAR2 axis, which might offer a new therapeutic strategy against gefitinib resistance of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Gefitinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , MicroRNAs/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Long Noncoding/biosynthesis , RNA, Neoplasm/biosynthesis , Receptor, Interferon alpha-beta/biosynthesis , Up-Regulation/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Neoplasm/genetics , Receptor, Interferon alpha-beta/genetics
10.
Mol Cell Biochem ; 477(4): 1095-1106, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064875

ABSTRACT

Obesity is becoming an epidemic of widespread concern, but the underlying causes remain elusive. In this study, whole transcriptome RNA sequencing revealed differential profiles of noncoding (nc) RNAs and mRNAs in visceral adipose tissue from obese (BMI > 32.5 kg/m2) and lean (BMI < 20 kg/m2) individuals, with 1920 differentially expressed genes, 1466 long noncoding (lnc) RNAs, 122 micro (mi) RNAs, and 52 circular (circ) RNAs identified. Gene Set Enrichment Analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis revealed that these ncRNAs were involved in inflammation-related pathways that included cytokine-cytokine receptor interaction, the tumor necrosis factor and nuclear factor kappa B signaling pathways. The results indicated a critical role of inflammation in the pathogenesis of obesity. The network interaction of lncRNA, circRNA, and miRNA revealed a competing endogenous (ce) RNA network that was associated with inflammation. The ceRNA network included circORC5/miR-197-5p/TNFRSF10D and circNTRK2/miR-760/LAT, which were dysregulated in obese patients. In conclusion, this whole transcriptome study provided a pool of data that will be useful for identifying biomarkers of obesity and identified an obesity-associated ceRNA network that is regulated by circORC5 and circNTRK2.


Subject(s)
Intra-Abdominal Fat/metabolism , MicroRNAs , Obesity , RNA, Long Noncoding , RNA-Seq , Transcriptome , Female , Humans , Male , MicroRNAs/biosynthesis , MicroRNAs/genetics , Obesity/genetics , Obesity/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics
11.
Mol Cell Biochem ; 477(1): 53-65, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34533647

ABSTRACT

The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems of stem cell transplant rejection. The anti-tumour potential of iPSCs against many tumours including salivary cancer was proven in previous studies. The current study aimed to investigate the contribution of the Bax, Sirt-1, TGF-ß, and MALAT genes and/or their protein expression to the pathogenesis of submandibular carcinogenesis before and after iPSCs treatment. Thirty Wistar albino rats were equally assigned into three groups: group I (control), group II (Squamous cell carcinoma (SCC)): submandibular glands were injected SCC cells, and group III (SCC/iPSCs): SCC rats were treated by 5 × 106 iPSCs. Submandibular gland sections were subjected to histological and immunohistochemical analyses to detect mucopolysaccharides, Bax, and TGF-ß expression as well as PCR quantification for TGF-ß, Sirt-1, and lncRNA MALAT-1 gene expressions. Western blotting was also used to detect Sirt-1 and TGF-ß protein expressions. SCC group revealed infiltration by sheets of malignant squamous cells with or without keratin pearls and inflammatory cells, in addition to upregulation of TGF-ß, Sirt-1, MALAT-1, and Bax, whereas SCC/iPSCs group showed an improved submandibular histoarchitecture with the maintenance of the secretory function. Bax and TGF-ß immunoexpression were significantly reduced. The upregulated TGF-ß, Sirt-1, and MALAT-1 genes were significantly decreased. iPSCs protected against the experimentally induced submandibular gland carcinoma that might be achieved via their regenerative potential and their regulatory modulation of Sirt-1, TGF-ß, and MALAT-1 gene/protein expressions and of the apoptotic response in cancer cells.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Induced Pluripotent Stem Cells , RNA, Long Noncoding/biosynthesis , RNA, Neoplasm/biosynthesis , Salivary Gland Neoplasms , Sirtuin 1/biosynthesis , Submandibular Gland/metabolism , Transforming Growth Factor beta/biosynthesis , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Rats , Rats, Wistar , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/therapy , bcl-2-Associated X Protein/biosynthesis
12.
Anticancer Drugs ; 33(1): e590-e603, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34338240

ABSTRACT

Autophagy-related long-chain noncoding ribonucleic acids play a vital role in the development of esophageal adenocarcinoma. This study aimed to construct a prognostic model of autophagy-related long-chain noncoding ribonucleic acids and identify potential therapeutical targets for esophageal adenocarcinoma. We downloaded 261 long-chain noncoding RNA transcript samples and clinical data of 87 esophageal adenocarcinoma patients from the Cancer Genome Atlas and 307 autophagy-related genes from www.autophagy.com. We performed Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses and Gene Set Enrichment Analysis to determine risk characteristics and bioinformatics functions of signal transduction pathways. Univariate and multivariate Cox regression analyses were used to determine the correlation between autophagy-related long-chain noncoding ribonucleic acids and independent risk factors. The receiver operating characteristic analysis was used to evaluate the feasibility of the prognostic model. Finally, we performed survival analysis, risk analysis and independent prognostic analysis to verify the prognostic model of esophageal adenocarcinoma. We identified 22 autophagic long-chain noncoding ribonucleic acids that were highly correlated with the overall survival of esophageal adenocarcinoma patients. The areas under the receiver operating characteristic curve (0.941) and the calibration curve were significantly similar. Moreover, univariate and multivariate Cox regression analyses indicated that autophagy-related long-chain noncoding ribonucleic acids were independent predictors of esophageal adenocarcinoma. We found that autophagy-related long-chain noncoding ribonucleic acids might affect tumor development and prognosis in esophageal adenocarcinoma patients. The findings indicate that the prognostic model of esophageal adenocarcinoma has potential therapeutic applications in patients with esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma/pathology , Autophagy/physiology , Esophageal Neoplasms/pathology , RNA, Long Noncoding/biosynthesis , Biomarkers, Tumor , Computational Biology , Humans , Kaplan-Meier Estimate , Prognosis , ROC Curve , Risk Factors
13.
FASEB J ; 36(1): e22075, 2022 01.
Article in English | MEDLINE | ID: mdl-34919285

ABSTRACT

Long non-coding RNAs (lncRNAs) regulate neurological damage in cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate the biological roles of lncRNA CEBPA-AS1 in CIRI. Middle cerebral artery occlusion and ischemia-reperfusion injury (MCAO/IR) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell lines were generated; the expression of CEBPA-AS1 was evaluated by qRT-PCR. The effects of CEBPA-AS1 on cell apoptosis and nerve damage were examined. The downstream microRNA (miRNA) and mRNA of CEBPA-AS1 were predicted and verified. We found that overexpression of CEBPA-AS1 could attenuate MCAO/IR-induced nerve damage and neuronal apoptosis in the rat model. Knockdown of CEBPA-AS1 aggravated cell apoptosis and enhanced the production of LDH and MDA in the OGD/R cells. Upon examining the molecular mechanisms, we found that CEBPA-AS1 stimulated APPL1 expression by combining with miR-340-5p, thereby regulating the APPL1/LKB1/AMPK pathway. In the rescue experiments, CEBPA-AS1 overexpression was found to attenuate OGD/R-induced cell apoptosis and MCAO/IR induced nerve damage, while miR-340-5p reversed these effects of CEBPA-AS1. In conclusion, CEBPA-AS1 could decrease CIRI by sponging miR-340-5, regulating the APPL1/LKB1/AMPK pathway.


Subject(s)
AMP-Activated Protein Kinase Kinases/biosynthesis , AMP-Activated Protein Kinases/biosynthesis , Adaptor Proteins, Signal Transducing/biosynthesis , Cerebrovascular Disorders/metabolism , MicroRNAs/biosynthesis , Nerve Tissue Proteins/biosynthesis , RNA, Long Noncoding/biosynthesis , Reperfusion Injury/metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinases/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/pathology , Disease Models, Animal , Gene Expression Regulation , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , RNA, Long Noncoding/genetics , Rats , Rats, Sprague-Dawley , Reperfusion Injury/genetics , Reperfusion Injury/pathology
14.
FASEB J ; 36(1): e22120, 2022 01.
Article in English | MEDLINE | ID: mdl-34958157

ABSTRACT

The mineralization capability of cementoblasts is the foundation for repairing orthodontic treatment-induced root resorption. It is essential to investigate the regulatory mechanism of mineralization in cementoblasts under mechanical compression to improve orthodontic therapy. Autophagy has a protective role in maintaining cell homeostasis under environmental stress and was reported to be involved in the mineralization process. Long noncoding RNAs are important regulators of biological processes, but their functions in compressed cementoblasts during orthodontic tooth movement remain unclear. In this study, we showed that compressive force downregulated the expression of mineralization-related markers. LincRNA-p21 was strongly enhanced by compressive force. Overexpression of lincRNA-p21 downregulated the expression of mineralization-related markers, while knockdown of lincRNA-p21 reversed the compressive force-induced decrease in mineralization. Furthermore, we found that autophagy was impeded in compressed cementoblasts. Then, overexpression of lincRNA-p21 decreased autophagic activity, while knockdown of lincRNA-p21 reversed the autophagic process decreased by mechanical compression. However, the autophagy inhibitor 3-methyladenine abolished the lincRNA-p21 knockdown-promoted mineralization, and the autophagy activator rapamycin rescued the mineralization inhibited by lincRNA-p21 overexpression. Mechanistically, the direct binding between lincRNA-p21 and FoxO3 blocked the expression of autophagy-related genes. In a mouse orthodontic tooth movement model, knockdown of lincRNA-p21 rescued the impeded autophagic process in cementoblasts, enhanced cementogenesis, and alleviated orthodontic force-induced root resorption. Overall, compressive force-induced lincRNA-p21 inhibits the mineralization capability of cementoblasts by impeding the autophagic process.


Subject(s)
Antigens, Differentiation/biosynthesis , Autophagy , Calcification, Physiologic , Compressive Strength , Dental Cementum/metabolism , Down-Regulation , RNA, Long Noncoding/biosynthesis , Animals , Male , Mice
16.
Toxicol Appl Pharmacol ; 435: 115845, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34953898

ABSTRACT

Chronic exposure to arsenic promotes lung cancer. Human studies have identified immunosuppression as a risk factor for cancer development. The immune checkpoint pathway of Programmed cell death 1 ligand (PD-L1) and its receptor (programmed cell death receptor 1, PD-1) is the most studied mechanism of immunosuppression. We have previously shown that prolonged arsenic exposure induced cell transformation of BEAS-2B cells, a human lung epithelial cell line. More recently our study further showed that arsenic induced PD-L1 up-regulation, inhibited T cell effector function, and enhanced lung tumor formation in the mice. In the current study, using arsenic-induced BEAS-2B transformation as a model system we investigated the mechanism underlying PD-L1 up-regulation by arsenic. Our data suggests that Lnc-DC, a long non-coding RNA, and signal transducer and activator of transcription 3 (STAT3) mediates PD-L1 up-regulation by arsenic.


Subject(s)
Arsenic/toxicity , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/genetics , Animals , Cell Line , Female , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mice , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Up-Regulation/drug effects
17.
Anticancer Drugs ; 33(2): 178-190, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34620745

ABSTRACT

Breast cancer is an aggressive malignancy with high morbidity in females worldwide. Extensive studies reveal that long noncoding RNAs (lncRNAs) are abnormally expressed and act as key regulators in various cancers, including breast cancer. In this work, we investigated the role and regulatory mechanism of lncRNA prostate cancer-associated transcript 6 (PCAT6) in breast cancer progression. Our findings revealed that PCAT6 was overexpressed in breast cancer tissues and cell lines. Furthermore, elevation of PCAT6 reflected an adverse prognosis of patients. Functional experiments indicated that PCAT6 knockdown hampered cell proliferation, facilitated apoptosis and cell cycle arrest in vitro, and inhibited tumor growth in vivo. We also found that the transcription factor SP1 could bind to the PCAT6 promoter and promoted its expression. Subsequently, it was verified that PCAT6 was a molecular sponge for microRNA-326 (miR-326), and the leucine-rich repeat containing the eight family member E (LRRC8E) was a direct target of miR-326. Rescue assays revealed that LRRC8E overexpression attenuated the suppressive effect of PCAT6 knockdown on cellular progression of breast cancer. In summary, this study demonstrated that SP1-activated PCAT6 promoted the malignant behaviors of breast cancer cells by regulating the miR-326/LRRC8E axis.


Subject(s)
Breast Neoplasms/pathology , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Long Noncoding/biosynthesis , Sp1 Transcription Factor/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Receptors, Cell Surface/metabolism
18.
Sci Rep ; 11(1): 23920, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907261

ABSTRACT

Myasthenia gravis (MG) is a complex neurological autoimmune disease with a pathogenetic mechanism that has yet to be elucidated. Emerging evidence has revealed that genes, non-coding RNAs and genetic variants play significant roles in the pathogenesis of MG. However, the molecular mechanisms of single nucleotide polymorphisms (SNPs) located on lncRNAs could disturb lncRNA-mediated ceRNA regulatory functions still unclear in MG. In this study, we collated 276 experimentally confirmed MG risk genes and 192 MG risk miRNAs. We then constructed a lncRNA-mediated ceRNA network for MG based on multi-step computational strategies. Next, we systematically integrated risk pathways and identified candidate SNPs in lncRNAs for MG based on data acquired from public databases. In addition, we constructed a pathway-based lncRNA-SNP mediated network (LSPN) that contained 128 lncRNAs targeting 8 MG risk pathways. By analyzing network, we propose a latent mechanism for how the "lncRNA-SNP-mRNA-pathway" axis affects the pathogenesis of MG. Moreover, 25 lncRNAs and 51 SNPs on lncRNAs were extracted from the "lncRNA-SNP-mRNA-pathway" axis. Finally, functional analyses demonstrated lncRNA-SNPs mediated ceRNA regulation pairs associated with MG participated in the MAPK signaling pathway. In summary, we constructed MG-specific lncRNA-SNPs mediated ceRNA regulatory networks based on pathway in the present study, which was helpful to elucidate the roles of lncRNA-SNPs in the pathogenesis of MG and provide novel insights into mechanism of lncRNA-SNPs as potential genetic risk biomarkers of MG.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Humans , Myasthenia Gravis/genetics , Myasthenia Gravis/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Risk Factors
19.
Acta Histochem ; 123(8): 151819, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34844154

ABSTRACT

OBJECTIVE: To investigate the effect and potential mechanism of quercetin on inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells. MATERIALS AND METHODS: H9C2 cells were obtained from the Shanghai Institutes for Biological Sciences, Chinese Academy of Science, and randomly divided into six groups: control, model, PVT1 overexpression (OV), quercetin, OV + quercetin, and NAC groups. The CCK-8 assay was performed to examine cell proliferation. Flow cytometry was used to examine cell apoptosis, cell membrane potential, and ROS levels. The expression of endothelial nitric oxide synthase (eNOS), malondialdehyde (MDA), and superoxide dismutase (SOD) was measured by ELISA and a Biochemical kit. Western blotting was used to determine the levels of p-DRP1 (s637), MFN2, NF-kB, p-NF-kB, IkB, and p-IkB. IL-6, IL-10, TNF-α, and IL-1ß mRNA expression was examined by RT-PCR. Electron microscopy was used to observe the structure of mitochondria in H9C2 cells. RESULTS: MDA, p-NF-κB, p-IKB, IL-6, IL-1ß, and TNF-α expression levels, and the cell apoptosis rate were significantly higher in the model group than in the control group (P < 0.05). In contrast, the cell proliferation rate and IL-10, SOD, eNOS, and ATP levels were significantly lower in the model group (P < 0.05). Moreover, MDA expression was significantly lower in the OV, quercetin, quercetin + OV, and NAC groups than in the model group (P < 0.05), while SOD, eNOS, and ATP levels were higher. The electron microscopy results showed that PVT1 overexpression or quercetin treatment could inhibit inflammation-induced mitochondrial fission and promote mitochondrial fusion. CONCLUSION: Quercetin promotes the proliferation of H9C2 cells, while inhibiting inflammation, oxidative stress, and cell apoptosis, and alleviating the structural and functional dysfunction of mitochondria. These effects are achieved by promoting PVT1 expression.


Subject(s)
Apoptosis/drug effects , Gene Expression Regulation/drug effects , Mitochondria, Heart/metabolism , Oxidative Stress/drug effects , Quercetin/pharmacology , RNA, Long Noncoding/biosynthesis , Cell Line , Humans , Inflammation/metabolism
20.
Front Immunol ; 12: 692079, 2021.
Article in English | MEDLINE | ID: mdl-34737735

ABSTRACT

Long non-coding RNAs (lncRNAs) in immune cells play critical roles in tumor cell-immune cell interactions. This study aimed to characterize the landscape of tumor-infiltrating immune-related lncRNAs (Ti-lncRNAs) and reveal their correlations with prognoses and immunotherapy response in head and neck squamous cell carcinoma (HNSCC). We developed a computational model to identify Ti-lncRNAs in HNSCC and analyzed their associations with clinicopathological features, molecular alterations, and immunotherapy response. A signature of nine Ti-lncRNAs demonstrated an independent prognostic factor for both overall survival and disease-free survival among the cohorts from Fudan University Shanghai Cancer Center, The Cancer Genome Atlas, GSE41613, and GSE42743. The Ti-lncRNA signature scores in immune cells showed significant associations with TP53 mutation, CDKN2A mutation, and hypoxia. Inferior signature scores were enriched in patients with high levels of PDCD1 and CTLA4 and high expanded immune gene signature (IGS) scores, who displayed good response to PD-1 blockade in HNSCC. Consistently, superior clinical response emerged in melanoma patients with low signature scores undergoing anti-PD-1 therapy. Moreover, the Ti-lncRNA signature was a prognostic factor independent of PDCD1, CTLA4, and the expanded IGS score. In conclusion, tumor-infiltrating immune profiling identified a prognostic Ti-lncRNA signature indicative of clinical response to PD-1 blockade in HNSCC.


Subject(s)
Gene Expression Profiling , Head and Neck Neoplasms , Immune Checkpoint Inhibitors/administration & dosage , Neoplasm Proteins/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Long Noncoding/biosynthesis , RNA, Neoplasm/biosynthesis , Squamous Cell Carcinoma of Head and Neck , Disease-Free Survival , Female , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/mortality , Humans , Male , Middle Aged , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/mortality , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...